A nucleus $_n{X^m}$ emits one $\alpha$ particle and two $\beta$ particles. The resulting nucleus is
$_n{X^{m - 4}}$
$_{n - 2}{Y^{m - 4}}$
$_{n - 4}{Z^{m - 4}}$
$_{n - 1}{Z^{m - 4}}$
Consider the following radioactive decay process
${ }_{84}^{218} A \stackrel{\alpha}{\longrightarrow} A_1 \stackrel{\beta^{-}}{\longrightarrow} A_2 \stackrel{\gamma}{\longrightarrow} A_3 \stackrel{\alpha}{\longrightarrow} A_4 \stackrel{B^{+}}{\longrightarrow} A_5 \stackrel{\gamma}{\longrightarrow} A_6$
The mass number and the atomic number $A _6$ are given by
$_1{H^1}{ + _1}{H^1}{ + _1}{H^2} \to X + {\;_{ + 1}}{e^0} + $energy. The emitted particle is
Pauli suggested the emission of nutrino during $\beta^{+}$decay to explain
$^{22}Ne$ nucleus after absorbing energy decays into two $\alpha - $ particles and an unknown nucleus. The unknown nucleus is
An element $A$ decays into element $C$ by a two step process :
$A \to B + {\;_2}H{e^4}$
$B \to C + \;2{e^ - }$
Then